
Symmetric Integration Rules for Hypercubes 
II. Rule Projection and Rule Extension 

By J. N. Lyness 

Abstract. A theory is described which facilitates the construction of high- 
dimensional integration rules. It is found that, for large n, an n-dimensional inte- 
gration rule of degree 2t + 1 man be constructed requiring a number of function 
evaluations of order 2tnt/t!. In an example we construct a 15-dimensional rule of 
degree 9 which requires 52,701 function evaluations. The corresponding number for 
the product Gaussian is 3 X 1010. 

1. Introduction. The purpose of this paper is to introduce a theory of rule 
extension by which an s-dimensional rule of particular degree may be used to con- 
struct an r-dimensional rule of predetermined degree. This is a generalization of the 
process which leads to a product rule. The particular feature of this process is that 
it is a linear process; once a set of nonlinear equations have been solved to obtain 
the s-dimensional rule, the higher-dimensional rule may be obtained by the applica- 
tion of linear algebraic formulae. In this paper we derive hitherto unpublished 
integration rules. The only nonlinear equations whose solution we assume are the 
Legendre equations, whose roots are the points used for function evaluation in the 
Gauss-Legendre quadrature formula (Gauss [1]). 

Sections 2, 3, and 4 are devoted entirely to the theory of rule projection and 
extension and to consideration of the degree of the consequent rules. Sections 6 and 
7 give specific types of rules derived by using this theory in a straightforward manner 
to extend the Gauss-Legendre quadrature formula. In Section 8 the rules obtained 
in Section 7 are shown to be of possible practical use and are used to establish a 
conjecture of Thacher [9]. 

In Part I (Lyness [5]) we introduced notation to describe integration rules. We 
assume without reference in this part the definitions of Part I and some of the re- 
sults based on these definitions. In particular, the basic rule, expressed as a con- 
volution product, 

n 

(3(ai , ea2 ... * an) = Wi(ai) * 1((a2) - * (J(aO) = II (R(ai), 
it 1 

and the composite rule, 

R'71)= Ei (iR') 

are assumed together with the definition of degree and the result that the degree of 
a product rule (R'1))' is the same as that of the one-dimensional rule R(l). 

In order to facilitate later generalizations, we consider a hypercube of edge 1 
and so we set a = 2 in the definitions of Part I. Also, for this reason we make no 
explicit use of the error coefficients c2,12,2.. .(R). The use of R (n) as in Section 4 of 
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Part I in connection with cytolic integration is discontinued. Instead we use the 
superscript to indicate the dimension of a rule and a subscript to indicate its degree. 
R(+) is an n-dimensional integration rule of degree 2t + 1. 

2. Rule Projection. It is well known that an n-dimensional integration rule may 
be used to construct an (n - 1)-dimensional integration rule by projection from 
the n-dimensional space to an (n -1 )-dimensional space. For example, if we apply 
the basic three-dimensional rule (R(a, 3, -y) which uses 48 points to a functionf(x, y) 
independent of z, we find immediately that we obtain an identical result to that 
obtained if we were to apply the rule 

(G~(Fj3 y) + G(ky, a) + (R(a, A)) 

to the function f(x, y). We describe this two-dimensional rule as the projection of 
ac(a, y, 'y) and write 

(2.1) 6R(a, 3, y) =m P(R(a, ,y)) = 1(R(, 'y) + GR(y, a) + (R(a, )) 

the symbol =X being read as 'projects onto' and the operator (P as 'the projection 
of'. 

We define the projection of an r-dim-nensional basic rule onto an (r - 1)-dimen- 
sional rule as follows: 

r r (2.2) G1(aa(X2, X ,***dr) ==> (P((R(al, a2, acK) jE II GR(ai). 
r j=1 i=1;io 

It follows by inspection that if f is a function of r - 1 variables, then 

(2.3) R (r)f(xl, x2, *...*, Xr-1) = (W(G(Rr)))f(xi,x2, * * *r-1) 

We define the projection of a composite rule R(r) in terms of the projection of 
basic rules O(r) by 

(2.4) R(r) = Z tCii(r) => (cP(R(r)) = Z (((Rr)) 

and we find, as for the basic rules, that if f is a function of r - 1 variables, then 

(2.5) R ,(r)x x , Xr-1) = ((P(R(r)))f(Xi IX2 I , , Xr-,), , 

For convenience, we introduce a zero-dimensional rule g with the property 

(2.6) (1(a) P((R(a)) ) 

and 

(2.7) g * (RG1) (R= r 

Making use of this symbol g where necessary, we may establish, using straight- 
forward algebra, that 

(2.8) 6I(n1R + 772R2r) = 711(P(R1(r)) + 7126(R2 ) 

and 

(29) 69(Rl(S) * R2(t) = 1 ) + () (2.) (Ri~s) * R2(t)) = s(vY(Ri())) *R2t ? t~i?) * 6P(R2Pt)) 
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Applying this to a product rule, we find 

(2.10) 6P((R"1')n) = (R"1) ). 

We now extend slightly the definition of projection. We define the s-dimensional 
projection R(s) of an r-dimensional rule R(r) (O ? s < r) as the result of r - s 
successive projections of R(r). For example, the one-dimensional projection of the 
three-dimensional rule (i(a, f, -y) is 6(P(6 (R(a, 3,P y))) and, using (2.2) twice, we 
see that 

(2.11) 1(a, A,y) ==> 6P(G1((R(a, 3,y))) = '(R(a) + i(3) + G(R(y)). 

(The symbol =X is used to describe any nurober of projections but the operator dP 
has been defined to project onto a dimension lower by one than the dimension of 
the rule on which it operates.) It follows that all rules R(r) project onto g, 

(2.12) R(r) g 
(2.13) (R(l) )n R () 

and that if R t) = R") then 

(2.14) R(r)f(xl ) x2, X) = R(`)f(xi , X2 X*), 

3. Rule Extension. The technique of rule projection described in the previous 
section is not by itself a powerful technique for deriving integration rules. It pro- 
vides a method of deriving an (r - 1)-dimensional rule if an r-dimensional rule is 
known. In general, the opposite situation prevails, i.e., we may know many one- or 
two-dimensional rules and be interested in determining rules in higher dimensions. 
We consider in this section an inverse process to that of rule projection. We term 
this process 'rule extension'. 

A particular case of rule extension is the n-dinmensional product rule, which is 
well known. A method for obtaining an integration formula for an (n + 1)-di- 
nmensional cone if a formula is known for its n-dimensional base is given by Hammer, 
Marlowe and Stroud [2]. Also Stroud [8] shows how to construct a formula of degree 
3 for the Cartesian product Rr X Rft of an r-dimensional region Rr and an s-dimen- 
sional region R8, provided that formulas of degree 3 are known for Rr and Rf . In 
both of these cases, the formulas are of different types than those discussed here. 

To illustrate the method we suppose that we wish to find a three-dimensional 
extension of the two-dimensional basic rule (R(a, 3). It is convenient to introduce 
an arbitrary coordinate y which we term the extension coordinate. We then look for 
a three-dimensional rule Rib) in the form 

(3.1) R)- = X(R((a, A, a) + X2G(3,a, ay) + X3(R(a,,VY) + X4M()'Yj'Yj). 

We make use of the projections 

C(R(a, 0,'y)) = 3t(0 y) + 1 &(y a) + J 6( a) 
@(&(:~~~ 3 7) =1i( 7 2i(7 

= 31(y, y) + 'R3(#,,y), 
(3.2) 

6P(c(Ra,ay,'y)) I=(Rty,y) + 21(,y, a), 

P((R(,y,,y,y)) =R 6e,'yI ) 
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The condition that R(3) projects onto G1(a, A) then leads to four equations in the 
four unknowns XI, X2, X3, and X4. The solution is XI = 3, X2 = X3 2t X4 = 1, 
so the rule R(3) is 

(3.3) R3)- = 3(Rt(a, 3, 'y) - 3(,yy) - I1(a, 7,y) + (t nyo yy) 

We term R(3) the three-dimensional extension of G(a, A) using extension coordinate 
oy and write it in terms of an extension operator E23(Q) 

(3.4) R( = E23(y)6R(a, A). 

It should be noted that the extension coordinately may be any positive number or 
zero. Moreover, R(3) is not defined as the only three-dimensional rule which pro- 
jects onto (R(a, A), but merely one of the form (2.1). The choice of z sometimes is 
based on the number of points v(Rf(3)) which the rule R(3) requires (see Section 5 
of Part I). In this case, if a /#3 and neither is zero, we find v(R(3)) is 25, 24 or 88 
according as y is zero, one of a or A, or some other value. Thus, in the practice of 
rule extension, it is usual to choose as -y either a coordinate which is already present, 
in this case a or ,B, or else the value zero. 

We now define the (s + 1)-dimensional rule EsS+1(-y)(R(ai, a2, . .. , aq) as fol- 
lows: 

E8 +1 (y) (a,, a2 a As) 

= Bo{(R.(y)1s+l + Bi{G((y)}8 * {G1(ai) + (R(a2) + * + (RJ(as)} 
(3.5) 

+ B21 R(7)}1 * > E (ai) * 1(aj) + * + B.(fy) * H (aj), 
X-1 j=i+1 jowl 

where 

(3.5a) (-l) t(s + 1) 

It may be verified, by direct application of the rules for the projection of composite 
rules given in the previous section, that 

(3.6+) (,(y)6R(ai , a * , a8) * 6P(Esg+l(y)6R(a, , a2 * , a8)) 
(3.6) ( ia - - (((t1ai, *ai , a8). 

The (s + l)-dimensional extension of an s-dimensional composite rule R(8) is 
defined iln terms of the extension of basic rules as follows. If 

(3.7) (s)= E ti(S) 

then 

(3.8) ES+ (y)R(S) = XI Es8(e)(ij. 

It is trivial to show that 

(3.9) E,8+l(y)R(8) => 6P(Ea8+l(7)R(8)) = R(R). 

Using equations (3.5) and (3.8) r - S times, and using the same value of y 
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each time, we may construct an r-dirnensional rule R(r) which we term the r-di- 
mensional extension of R(') using extension coordinate y. This is defined as 

(3.10) R(r) = Er (y)E r-(y) . Es8+'(y)Rs) -Esr(y)R(s). 

It follows from equations (3.8) and (3.10) that 

(3.11) ES (y)(Z iRi()) = ZEr(7)GRi(). 

Iteration of equation (3.5) leads to the formula, 

Esr(Y)6(ai, a2 , ), a) 

(3.12) Ao- {(y)V + All{(,y)Vr- * IR(a,) + (R(a2) + ... + (R(a,)I 
S S S 

+ A2 (R)}T * Z E R(ai)* 6(a,) + + AI iy)}Tr- * I I rs 
(R) 

it=1 j=i+1 i=1 

where 

(3.12a) At (-_) r (( -s) 
(r - s)! s! (r -t) 

It is sometimes convenient to extend product rules. Letting R(I) be a one-di- 
mensional rule and using the techniques of this section, we find without difficulty 
that 

(3.13) Er7&y) (R(I))s s!r- -)R s? {(.,y)}Irt * (R~l))t. ( . ) 8 (tr)( ) s! (r - s - )! t=o r t (t){(} ( ) 

If s = 1, this becomes 

(3.14) E r( )R(')= -(n 1) {1&(Y)lr + n{R(,y)r * R 

Any rule may be expressed as a linear combination of product rules. Thus, in certain 
cases, (3.13) may be used as an alternative to (3.12) to reduce the amount of com- 
putation in extending a rule. 

Simple examples of rule extension include the following result: 

(3.15) Es (y) {(R(y)} = {(R(y)lr 

However, this is the only case in which the extension operator Er8(Y) operating on 
a proditt rule results in another product rule. The situation is illustrated by con- 
sidering two-dimensional extensions of Simpson's rule: 

(3.16) 1s = 6(R(0) + 3(R(1). 

We find that 

(3.17) (Rs) - E 2(O)Rs - E 12(1) Rsf 

and the corner and vertex rule in two dimensions, 

(3.18) -2) = 21{(R(0)}2 + MCiJ(1)}2 = 2E12(O)R -E12(1)R. 

Each of the different rules (Rs)2, R(2), E2y)Rs project onto Rs. 
4. The Degree of an Extended Rule. In Part I we defined the operator I to be 

the integration operator. It' is convenient to re-define the integration operator in r 
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dimensions as follows 

(4.1) =ii: : f dxUdX2 sdx, 

where f is a function of at most the r variables xi, x2, x, Xr. This definition cor- 
responds to the definition in Part I if we set a = 2 in that definition. If f is a func- 
tion of only s of the r variables, we see that 

(4.2) I(r)f(X1 X2, x2 , X.) = I(s)f(x , x2, X, x), r > s. 

An n-dimensional integration rule R(+) of degree 2t + 1 is one which integrates 
correctly all polynomials of degree 2t + 1 or less in the n variables. We restrict 
ourselves to symmetric integration rules only. One consequence is that any poly- 
nonlial which is odd in any variable is integrated to its correct value zero. More- 
over, if the rule is constructed so that it integrates correctly a polynomial x 2 .x2.2 

Xn," then it automatically integrates correctly the polynomial XlmlX2 2 n . , 
where MI m2 ... mn are a permutation of the integers nl n2 * *n . Thus, a necessary 
and sufficient condition that R () is of degree 2t + 1 is 

(4.3) R+nf = J(n)f when f C ct+1, 

where 4(n) is a finite set of functions defined by 

cL(i) = {x18x22 * Xnn" such that the ni are non-negative even 

(4.4) n 
integers, n1 _ n2 _ *.. > nn, andE n < 2t + 1}. 

i=1 

It is convenient to establish subsets of this set P() ; we construct separate subsets 
w which contain only polynomials in exactly m variables. Thus 

0t+1 = {X11X22 ... Xmm'm such that the ni are non-negative even 

(4.5) n 

integers, nl ? n2 _ > nm > 0, and ni < 2t + 1. 
i=1 ) 

An example of these sets (t 4) is 

4+5 = } 

4 51 = {X12 X14, X1, X1 }, 

2 2 2 4 2 6 2 4 4 
+5 = {Xl X2, X1 X2, X1 X2, X1 X2}, 

(4.6) 3 2 2 2 4 2 2 
= {1 X2 X3, Xl X2 X32}, 

4 2 
X2X 2X4 

2 

arm = I} X m ? 5. 

These twelve polynomials have to be integrated exactly by any n > 4 dimensional 
rule R6 (n) of degree 9. Moreover, if R(n) satisfies the twelve equations R (n)= i()f 
when f is one of these twelve functions, then R(') is of degree 9. 
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Trivial consequences of these definitions are 

(4.7) 4i(D = . (m-1) U m 

(4.9) 1 t+ m_ t +1, 

(4.10) ?( )1 = ?(++P) p = 0, 1, 2, * -ni 

(4.11) f t+p O t p = 0 ,1 2,* 
Using (4.7) we see that 

(4.12) c(m+P D k(m) Xp = 0, 1, 2, . 

Moreover, if n < t, we may use (4.11) in the form 

(4.13) or+, D or < 

together with (4.8) to establish 

(4.14) tDl : 00+1 U 0n+1 U ... U o+n n <t. 

The right-hand side of (4.14) is b(")N and, using this together with (4.10), we find 

(4.15) Cp4n h =D (n) =-W,(n+p) n <,p = 0 1, 2, 

We make explicit use of (4.7), (4.10), (4.12), and (4.15) in this section and in Sec- 
tion 7. 

We now establish the following Theorems: 
THEOREM 4.1. If R(r) = R(s), the degree of R(S) is at least as great as the degree of 

R(r). 
Proof. If R(") is of degree 2t + 1, then 

R(r)f = I(r)f, when f E 4h 

but if s < r, equation (4.12) states that 
(a) C4 st+1 5t+l. 

Thus 

1(r)f = I(r)f, when f E b( )1* 

All elements of 4(+)2 are functions of s or fewer variables. Thus, using (2.14) and 
(4.2), 

R(r)f = R(')f, when f E -b , 

J(r)f 
= I(8)f, when f E(Dm)l. 

Hence, 

R(=)f = I(8)f, when f E -C(VI 

This is the condition that R(8) is of degree 2t + 1 and so establishes the Theorem 
4.1. 

THEOREM 4.2. If R(r) =: R(8) and R(8) is of degree 2t + 1, the degree of R(r) is at 
least 21' + 1, where t' = min(s, t). 
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Proof. 

R(8)= I(8)f when f E dt (8. 

Using (2.14) and (4.2), 

R(8)f R(r)f, when f E 't4( X 

I(8)f 
I 

I(r)f when f E ( ) 

Hence, 

R(r)= I(r)f, when f E ( 
) 

If s _ t, (4.10) states 

st+l = t+l for s > t. 

Thus 

R(r)f = I(r)f, when f E N, s ? t. 

Hence, the degree of R(r) is 2t + 1. If s < t, (4.15) states 

(1 (8)D ) (8 (r) 8 t bt+1 8+= 8+1 XS<t 

Thus, 

R(r)f = I(T)f, when f C dI+h, S <t. 

Hence, the degree of R(r) is 2s + 1. 
In both cases the degree of R(r) is 2[min(s, t)] + 1. This establishes Theorem 

4.2. 

5. Construction of High-Dimensional Low-Degree Rules. Theorems 4.1 and 
4.2 provide directly a method for generating integration rules. Once the tedious 
task of calculating an s-dinmensional integration rule R( ) of degree 2t + 1 has been 
completed, we may construct n > s dimensional rules of degree 2t' + 1, where 
t= min(s, t), merely by applying the formulae of Section 3. This may be done in 
a wide variety of ways. We may simply calculate the rule E,(y)R (+)l, which gives 
us a one-parameter system of such rules. Instead, we may proceed as follows. We 
may express RX(+> in terms of its constituent basic rules and extend each basic rule 
using, possibly, a different extension parameter for each extension. This may be 
expressed as follows: 

p 

Rt(+)1 = E j(%(S) I 

i=1 

=t1+ ~x n _1'i )n 1 . .. E,31(yj,, )G1Rj'3. 

It is easy to verify that 

P +(n) R(8) 

Thus R(n)i is an n-dimensional rule of degree 2t' + 1, where t' = mnin(s, t), which 
has (n - s) p arbitrary parameters yij . These parameters may be chosen with any 
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end in view, but they are normally chosen to minimise some component of the error. 
In the examples in Sections 6 and 7 we choosey = 0, as this has the effect of keeping 
the number of function evaluations v(R(i),) reasonably small. 

The systematic construction of n-dimensional integration rules using this tech- 
nique and powerful generalisations is being carried out. In this paper we limit our- 
selves to two simple and practical illustrations. 

6. The Rules E'(0) ((Gt?1)t). The one-dimensional (t + 1)-point Gauss-Le- 
gendre quadrature formula of degree 2t + 1 is widely discussed in many books on 
numerical integration (Gauss [1]). We write it as follows: 

[ ( t+1) /21 

(6.1) G =+i EX (Oj). 
ill 

The values of Ri and At are readily available in the literature (see for example: Kopal 

[4]). 
The n-dimensional product Gaussian (Gt+?)' is, for all values of t and n both 

greater than 3, the most efficient in terms of function evaluations of the hitherto 
published integration rules. The number of points required by this rule is 

(6.2) v((Gt+1)') = (t + 1)n. 

However, we may construct the rule 

(6.3) Et (O)(G?l) tX= (Gt+1)t. 

Since (G,+?)' is a product rule, it has the same degree as Gt+l, namely, 2t + 1. 
Using Theorem 4.2, the degree of 

Wen(O) ( (Gel) t) 

is seen to be 2t + 1. The number of function evaluations required by this rule is 
easily calculated using the formulae of Section 5 of Part I. It appears that 

V(E t0(Gt+,)t)= 1 + t (1) + t2 + + tt (t) (t even), 

(6.4) - + (t + 1) (n) + (t+1 )2 ) 

+... +(t+1)t( 

) 
(todd). 

In both cases this is a polynomial of degree t in n; the leading term is either (tt/t !)nt 
or ((t +1)/It )n'. 

If n > t, this rule is usually a considerable improvement (from the point of view 
of the required number of points) on the presently available product Gaussian 

(G,,,) of the same degree. In fact, if t is even, the points used by this rule, 
Etn(O) (Gt+?) t, constitute a subset of the points used by (G+l )n, so 

(6.5) v(Et'(0) (Gt+?)t) < v((Gt+i ) n) (t even). 

For odd t inequality (6.5) is not necessarily true, though it is.certainly true if t is 
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TABLE 1 

Number of Points Required by Certain 15-Dimensional Integration Rules 

Degree t (v(Ee5(0)Gt+) v(Gtl 5) Lower bound 

3 1 32,768 31 30 
5 2 1.43 X 107 451 420 
7 3 1.07 X 109 30,861 5,381 3,640 
9 4 3.05 X 101? 380,301 52,701 21,840 

The rule Go,) is defined in equation (7.16). The lower bound which applies to 
a symmetric rule is derived in a later publication. 

much smaller than n. The situation is illustrated in Table 1 in which the number of 
points required by certain fifteen-dimensional rules are listed. 

The only published rule of the form E n(O) ( (Gt+1) t) is the first nontrivial case 
t= 2. In this case, with 3 = we have 

(6.6) G3 = 6(O) + 9(G(G), 

(6.7) (G3 )2 - 1R(0 0) + 0(FR(0, A) + 25(R(G3 A). 

Substituting G3 for R(l) into expression (3.13), we find 

E~n (0)I2 
= n(n - 1)(n - 2) f 1 2 

A) ~2 2n 2 
RO G 

(6.8) 
2 1 1, n 

- n-i {I(R(0) I *G3?- IO(R(O) . 

Finally, substituting for G3 and G32 and collecting together terms, we find 

2n (0) (G3 )2= 16{ (25n2- 115n + 162){f1(0)}1 
(6.9) + lOn(14 -5n) {6(0)} n-' * 61(3) + 25n(n-1){(R(o)} n-2 * (R-(,B S) 

This rule is given by Miller [6]. The number of function evaluations it requires is 
given by (6.4) above and is 

(6.10) V(E2n(0) (G3)2) 1= + 2 (n) + 4 (2) = 2n2 + 1. 

For large n, this is considerably less than 

(6.11) v((G3)n) = 3n 

7. The Rules Go+) . Instead of making direct use of Theorem 4.2 as it stands, 
we may proceed in a slightly more involved way to extend the Gauss-Legendre 
quadrature formula. We consider the integration rule, 

(7.1) Rft) = E_.1(0) (Gt+1) - + Of(R(41)} -I' E -OL1(0) ((R(03)) 

where q is an adjustable parameter. We find, without difficulty, that 

(7.2) (p(R(t)) = (Gt+?)t1. 

Now G,+1 is of degree 2t + 1 and so (Gt+1) t- is also of degree 2t + 1. Thus 
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(7.3) (Gt+1)''f = I A when f E b(t-l) 

Using (2.14) and (3.2), together with (7.2), it follows that 

(7.4) R(t)f = IPt)f, when f E j4?l) 

We now choose 0 so that R(')f = IP)f when f is the function x12x22 * t *2 that is, 
the only element of 0t+,. This is done by simple substitution. We find, without 
difficulty, that 

(7.5) Et-.1(0) (Gt+1) t'x2x22 *x2 = 0, 

since this rule evaluates this function at points at which it is zero. Moreover, 

(7.6) E-1(0)tc(,1B)} '-x12x22 . *xI2 = 0 

for the same reason. JR(,31)} 1 evaluates this function only at points where all the 
coordinates are BI. Thus 

(7.7){ (R (#1) } X12X22 2 ... Xt2 =_ 2t 

and the definition (4.1) gives 

(7.8) IJt)X12X22... Xt2 = 1/3. 

Thus, with this function f, the equation R(t)f = i)f gives 

(7.9) 4=1/(3#1)- 

We define the rule Gt( ) to be R(*) given by (7.1) with 4 taking this value. Thus 

(7.10) G")o = 
E'_I(0) (Gt+D) 

+ 1 [ I (:) ' - Et_ (0) ( )) 9+1 t ~ ~ - (3#1i2)tIc()}- 

We have chosen 4 so that 

(7.11) (+)Lf =PI)f, when f E 044 

However, since 0(t)! is a special case of R"t), (7.4) gives 

(7.12) G(+)f - IPtf, when f E ?(t- 

Using (4.7), we see that 

(7.13) 1U (+1 ) =+1 

Thus (7.11) and (7.12) taken together yield 

(7.14) G(+)if = I(t)f, when f E )- 

Thus 09(Vi is of degree 2t + 1. 
We define an n-dimensional extension of this rule, 

(7.15) +1 = E t(0)G?+1 n = 1, 2, 3, *- 

It is clear that Gt1) is also of degree 2t + 1. This rule may be written 

(7.16) G = Etn(O)(Gt+,) - + [Etn(0)fR(j%)} -E 
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The number of function evaluations required by o(7) is 

) = l + t (1n+ * **+ tfl (-1) + 2t t ) (t even), 

(7.17) 1+ (t + 1) (a) + + (t + 1) 1 ( n1) 

+2t ) (todd). 

This is clearly fewer than the number used by the rule E n(O) (G,+1)t of the pre- 
vious section. That number is given in equation (6.4). In fact, a+) uBs as points 
for function evaluations a subset of the points used by Et"(O) (Gt+1)'. 

The simplest nontrivial case is that with t = 2. In this case, G (n) is identical 
with E2n(0)(G3)2 and is given in (6.10). As an example, we construct G4() . Here 

(7.18) G4 = tiR(fli) + t2(032)X 

where 

= (18 - V30)/36, 

=2 = (18 + V30)/36, 
(7.19) p2= (15 + 2V/30)/35, 

=22_ (15 - 2V30)/35. 

The term E2'(0) (G4)2 is calculated in the same way as the expression E2n(o) (G3)2 
was calculated in Section 6. We use (3.13) yet again to calculate E3n(0) (6(fl,) )3 

and E2,(0) R(a () )2. The final result for (7.16) with t = 3 is 

=a(n) {i(0)}In - 1)(n - 2) - 
6) 

+ {R(0)}n-'1* R(#,)n(n - 2) -ri + (n1- 

+ {6 (0) I n * (RG(02 )n(n - 2) (- 2) 

(7.20) + {r01n22* , (n 1) (?_ (n-2)4) 

+ {I(() J2 * (R(3,1 Xl2)n(n - 1)? -2 

+ {IR(0) I n2 * (R(132 X 2)n(n - 1) 2 

+ {IR(R 0) 3 * (R6(f&3 X1 X #I)n(n-1 ) (n -2) /6 

where ?1, t2, X and 132 take the values given in (7.19), and 

(7.21) = 1/27#136. 

The rule G4(") is the weighted sum of seven n-dimensional basic rules. The number 
of points required is, therefore, the sum of the number required by each separate 
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basic rule and is given by (7.17). Thus 

(7.22) = 1 + 2.2 (1) + 4.4 (2) + 8 (3). 

We note that this is an improvement on E3'(0) (G4)3 which uses, in addition, 
the points required by the basic rules lR(O)}n-3 * G(R#, 3,1, f32), IR(0)}I-3 
* (R(f, (2, (2) and R(OI)}In3 * G(R2, p32, 132). The expression for v(E3n(O)(G4)3) 
differs from (7.22) above, the coefficient of the leading term being larger by a 
factor of 8. The rule 04(n) is not the most economical. There exists a rule which 
uses all but one of the seven basic rules used by 04(n), the omitted rule being 
(R(0) n-2 * (R(f1, 12). And for certain values of n, we have constructed rules of de- 
gree 7 which use fewer points than this. These rules will be published in due course. 

8. v(Rt+,) as n -m o. The rules constructed in Section 4 establish a conjecture 
(Thacher [9]). We state it in the following form: 

For fixed d = 2t + 1, there exists a set of integration rules, uG1, t(++l), **, 
in t, t + 1, dimensions, each of degree d, with the property that 

Lim v(Onl )/2t (n) 1. 
n-0 t 

Stated in the form of the original conjecture, for symmetric rules of fixed degree 
d = 2t + 1 the number of points required goes up as (2t/t!)nt. 

The principal purpose of Section 7 is to derive the result stated above. However, 
the integration rules that we have constructed are themselves of possible practical 
interest for integration over a high-dimensional hypercube. We exemplify this in 
the table by listing the number of points required for n 15 by the two rules de- 
rived here and for the product Gaussian. A lower bound to be derived later is also 
listed. We shall show in a forthcoming paper that there exist more economical rules 
for n = 15 and d _ 3. These are constructed by a simple extension of the methods 
in this paper. The important point is that the number of points required, for ex- 
ample, for d = 9 and n = 15, is of the order of 50,000 and need not be thirty thou- 
sand million. Thus the possibility of carrying out moderate-degree high-dimensional 
integration using integration rules in practice exists. 

These integration rules should be used with caution. The referee has pointed 
out, quite validly, that the rule G215 requires roughly the same number of points 
as the rule G5 (5) and integrates exactly a majority of the multinomials integrated 
exactly by 05(15).* 

It may, therefore, easily be the case that use of the more complicated 06Y5) 
instead of G215 is not repaid by any appreciable increase in accuracy. The author 
agrees entirely with this point of view. The intricate question of whether a more 
accurate result is obtained, in general, by using a high-degree rule or in some other 

* The rule G(15) given here uses 52,701 points. However, a similar rule is available which 
uses only 27,341 points and will be published. This is, in fact, fewer than v(G215) but the ar- 
rangement of the points is much more complicated. Stenger [7] has also derived a rule using 
49,061 points. 
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way is of the utmost importance. The person carrying out the initegration usually 
wants to know what reliance he may place in his numerical result. This may or may 
not be related to the degree of the polynomial that the rule will integrate exactly. 
There is both need for and Scope for such an investigation. 

The rules derived irn this paper may be of use in such a general analysis of inte- 
gration formulae. However, the purpose of thi8 paper is mere]:' fo indicate how rules 
of particular degree may he constructed. 

University of New South Welles 
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